Single-wire 256-level grayscale five-

channel constant current LED driver IC

Main features • The

OUTR, G, B, W1, and W2 ports have a voltage resistance of 20V, and the DIN and DOUT ports have a voltage resistance of 24V. • The chip has a built-in voltage regulator tube. The power supply terminal below 24V only needs to connect a resistor to the VDD pin, without the need for an external voltage regulator tube. • The chip has built-in resistors, and the DIN and DOUT ports have overvoltage protection. Short-circuiting to 24V will not cause burnout. • Built-in signal shaping circuit, any IC receives the signal and then outputs it after waveform shaping, ensuring that line waveform distortion will not accumulate. • Built-in power-on reset and power-off reset circuit. • The PWM control terminal can achieve 256 levels of adjustable grayscale and a scanning frequency of 4KHz. • Serial interface cascade interface can receive and decode data through one signal line. • Resume downloading at breakpoints. Even if a single chip is damaged, the overall display effect will not be affected. • The transmission distance between any two points does not exceed 5 meters without adding any circuits. • When the refresh rate is 30 frames/second, the number of cascades is not less than 1024 points. • Data transmission speed can reach 800Kbps.

Main application areas •

LED point light sources, LED light strings, and LED modules. • LED

soft light strips, hard light strips, LED guardrail tubes. •

Various electronic products and electrical equipment

marquees. • Various other LED lighting products.

product description

WS2805 is a five-channel LED drive control dedicated circuit. The chip contains an intelligent digital interface data latch signal shaping amplification drive circuit, a high-precision internal oscillator and a 20V high-voltage programmable constant current output driver. At the same time, in order to reduce the power ripple, OUTR, G, B, The W1 and W2 channels have a delayed turn-on function, which can reduce circuit ripple during frame refresh.

The chip uses a single-wire return-to-zero code communication method. After the chip is powered on and reset, the DIN1 terminal accepts the data transmitted from the controller and first sends it After the incoming 40-bit data is extracted by the first chip, it is sent to the data latch inside the chip. The remaining data is reshaped and amplified by the internal shaping processing circuit and then forwarded and output to the next cascaded chip through the DO port. Each time it passes through For chip transmission, the signal is reduced by 40 bits. The chip uses automatic shaping and forwarding technology, so that the number of cascades of the chip is not limited by signal transmission, only the signal transmission speed requirements.

The data latch inside the chip generates different duty cycle control signals at the OUTR, G, B, W1, and W2 control terminals based on the received 40-bit data.

number, when waiting for the DIN terminal to input the RESET signal, all chips will send the received data to each segment synchronously. The chip will re-receive the data after the signal ends. After receiving the first 40 bit data, it will forward the data port through the DO port., before the chip receives the RESET code, OUTR, G, B,

The original output of the W1 and W2 pins remains unchanged. After receiving the low-level RESET code of more than 280ÿs, the chip will output the 40bit PWM data pulse width just received to the OUTR, G, B, W1, and W2 pins.

Available in SOP-10 package.

Single line 256-level grayscale five channels

Constant current LED driver IC

Pinout arrangement

Pinout function

serial number	symbol	Pin name	Function description
1	OUTR	LED driver output	RED (red) PWM control output
2	OUTG	LED driver output	GREEN (green) PWM control output
3	OUTB	LED driver output	BLUE (blue) PWM control output
4	OUTW1	LED driver output	WHITE1 (white) PWM control output
5	OUTW2	LED driver output	WHITE2 (white) PWM control output
6	GND	land	Signal ground and power ground
7	DO	data output	Show data cascade output
8	DIN2	Data 2 input	Display data 2 input
9	DIN1	Data 1 input	Display data 1 input
10	VDD	Logic power	IC power supply

Maximum rating (TA=25ÿ, VSS=0V)

parameter	symbol	scope	unit
Logic supply voltage	VDD	+3.5~+5.7	V
R, G, B, W1, W2 output port voltage resistance	VOUT	20	V
Logic input voltage	VI	VDD-0.7ÿVDD+0.7V	V
Operating temperature	Topt	-40ÿ+85	ÿ
Storage temperature	Txt	-40~+105	ÿ

Single line 256-level grayscale five channels

Constant current LED driver IC

				-	-	
parameter	Symbol M	inimum Typical	Maximum Uni	t		Test Conditions
Quiescent Current	lo	0.6		——mA		DC=5V
R, G, B, W1, W2 Low level output current	IOL	10	12	14	mA DC=	5V, DINÿFFHÿ
Low level output curren	t Idout	10	r	nA		Vo=0.4V, DOUT
Signal input current	II			±1	μA	VI=VDD/VSS
High level input	VIH	0.7VDD			V	DIN
low level input	VIL ——	0.3 VDD			V	DIN
hysteresis voltage	VH	0.35 -			V	DIN

Electrical parameters (TA=25ÿ, VDD=4.5ÿ5.5V, VSS=0V)

Switching characteristics (TA=25ÿ, VDD=4.5ÿ5.5V, VSS=0V)

parameter	Symbol N	linimum Typ	ical Maximu	m Unit		Test Conditions
Oscillation frequency	Fosc —	–800——КН:	z			_
Transmission delay ti	me tPLZ —	300			ns	CL=15pF, DINÿDOUT, RL=10Kÿ
Fall time	tTHZ —	120			μs	CL=300pF, OUTR/OUTG/OUTB
Data transfer <i>rateFI</i>	ИАХ	600 —	- —— Kbps (uty cycle 50	%	
Input capacitance	CI ——	15			pF	

Data transfer time

тон	0 code, high level time	220ns~380ns
T1H	1 code, high level time	580ns~1us
TOL	0 code, low level time	580ns~1us
T1L	1 code, low level time	580ns~1us
RES	Frame unit, low level time	280µs or more
TDATA	Data cycle (TH+TL)	ÿ1.25us

Single line 256-level grayscale five channels

Constant current LED driver IC

Data transfer method

Note: D1 is the data sent by the MCU, and D2, D3, and D4 are the data automatically shaped and forwarded by the cascade circuit.

40bit data structure

R7	R6	R5	R4	R3	R2		R1	R0	G7	G6	G5	G4	G	5	G2	G1	G0	continue
	20					200							05	0.004			е о	
cor	ntinued from	B7	В6	B5	B4	B3	B2	B1	B0 W1	7 W16 W1	5 W14 W1:	3 W12 W1	1 W10					continue
cor	ntinued from	W27	W26	W25	W2	24	W23	W22	W21	W20								

Note: The high bit is sent first, and data is sent in the order of RGBW1W2.

Single-wire 256-level grayscale five-

Typical application circuit

1. 5V power supply application reference circuit (with 1 LED per channel): The

recommended value for Rd is 150R, and the recommended value for C1 is 1uf.

2. Reference circuit for 12V power supply application (with 3 LEDs per channel): The

recommended value for Rd is 4.7k, and the recommended value for C1 is 1uf.

3. 24V power supply application reference circuit (each channel has 6 LEDs): The

recommended value for Rd is 10k, and the recommended value for C1 is 1uf.

Single line 256-level grayscale five channels

Constant current LED driver IC

Package diagram and parameters

ÿ SOP-10 package

	SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS	A		—	1.75
STAND OFF	A1	0.05	0.125	0.20
MOLD TOTAL THICKNESS	A2	1.30	1,40	1.60
TOP MOLD THICKNESS	A3	0.55	0.60	0.65
BOTTOM MOLD THICKNESS	A4	0.547	0.597	0.647
LEAD WIDTH	b	0.31	_	0.53
MOLD LENGTH	D	4.80	4.90	5.00
MOLD WIDTH	E1	3.80	3.90	4.00
LEAD SPAN	E	5.80	6.00	6.20
LEAD PITCH	е	-	1.00 BSC	
LEAD LENGTH	L1	0.95	1.05	1.15
LEAD SOLE LENGTH	L	0.40	0.60	0.80
LEAD FORM ANGLE	θ	0°	_	8°

Single line 256-level grayscale five channels

Constant current LED driver IC

File change history										
Version num	ber status	Edit summary	Revision DateRevisor Approver							
V0.1	N	New (first version of development)	20230210 Yu Xinghui Yin Huaping							
V0.2	М	Parameters updated, renamed WS2805	20230322 Yu Xinghui Yin Huaping							
V0.3	М	Pin definition adjustment, package size adjustment	20230324 Yu Xinghui Yin Huaping							

Note: The development version is engineering batch test data and is an informal mass production version. Various parameters may be optimized and are for reference only.

The official mass production first version is V1.0.