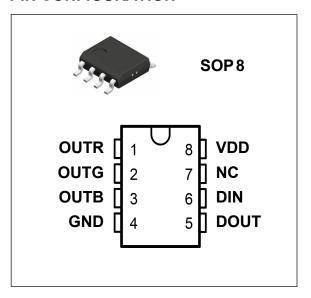
3-channel LED display driver

UCS1903N

GENERAL DESCRIPTION

The UCS1903N is a 3-channel LED display driver / controller with a built-in MCU digital interface, data latches and LED high voltage driving functions. It features superior performances and reliable functions. Under the control of the external MCU, it performs independent grayscale control through data-cascading transfer for driving large outdoor colour dot-matrix LED panels.


FEATURES

- 1. single line data tronsmission (return to zero code)
- 2. shaping transmit specific technology, Cascade number of lamps and lanterns is not restricted
- 3. cascading ability enhancement technology, Any 2 lanterns spacing can be up to 10 meters
- 4. Data transfer rate of 800 k/s, Images of not less than 1024 points can be realized when the refresh rate of 30 frames per second,
- 5. RGB output port PWM control can be achieved 256 grey level adjustment, port scanning frequency of 1.5 KHz/s
- 6. chip VDD built-in 5 v voltage regulator tube, output port Withstand Voltage is greater than 24 V
- 7. adopt the preset 17 mA/channel constant current mode. High precision of constant current , differences of current between Channel is less than $\pm 1.5\%$, the differences of current between Chip is less than $\pm 3\%$
- 8. when power up ,IC self-inspection then Light connection on the pin B lamp
- 9. SA-I Anti-interference patent technology for single line data tronsmission
- 10. Industrial design, stable and reliable

Application:

Point light source full color module full color light bar LED decorate..

PIN CONFIGURATION

PIN DESCRIPTION

Number	Symbol	Name	Function Description
1	OUTR	LED drive output	Red PWM control output
2	OUTG	LED drive output	Green PWM control output
3	OUTB	LED drive output	Blue PWM control output
4	GND	Ground	Ground
5	DOUT	Data output	Display data cascaded output
6	DIN	Data input	Display data cascaded input
7	NC		
8	VDD		Logic power supply

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \,^{\circ}\text{C}$, $V_{SS} = 0 \,\text{V}$, unless otherwise specified)

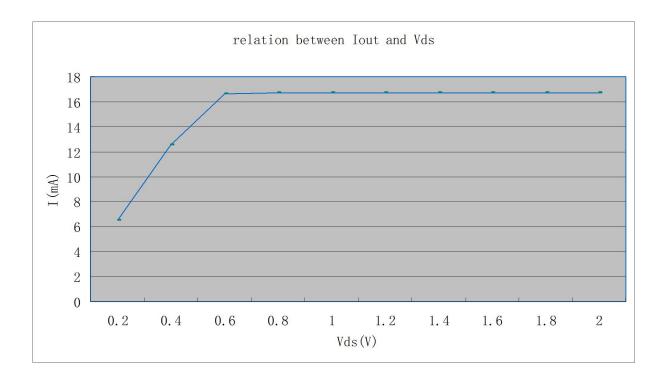
Parameter	Symbol	Value	Unit
Logic supply voltage	V_{DD}	+7.0	٧
Output port limitation voltage	Vout	28	V
Logic input voltage	Vı	-0.5 to V _{DD} + 0.5	V
Operating temperature	T _{OPT}	-40 to +85	$^{\circ}$
Storage temperature	T _{STG}	-55 to +150	$^{\circ}$
antistatic	ESD	6000	V
output rating	Pd	400	mW

RECOMMENDED OPERATNG RANGES ($T_A = -20$ to $+70 \,^{\circ}\mathrm{C}$, $V_{SS} = 0 \,\mathrm{V}$, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max	Unit
Logic supply voltage	V_{DD}	-	5.5	-	V
High level input voltage	V _{IH}	0.7 V _{DD}	-	V_{DD}	٧
Low level input voltage	V _{IL}	0	-	0.3 V _{DD}	V
Output port rated voltage	Vout	24			V

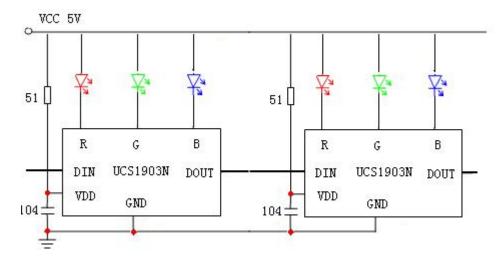
ELECTRICAL CHARACTERISTICS ($T_A = -20$ to +70 °C, $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
Low level output current	lout	16.5	17	17.5	mA	R, G, B
Low level output current	ldo	10	-	-	mA	Vo = 0.4 V, Dout
High level input voltage	Vih	0.6Vdd	-		V	
Low level input voltage	Vil	-	-	0.3 Vdd	V	
Voltage hysteresis	Vh	-	0.35	-	V	
quiescent current	IDDdyn			1	mA	无负载
rated power	PD			250	mW	(Ta=25℃)
thermal resistance	Rth(j-a)		80	190	°C/W	

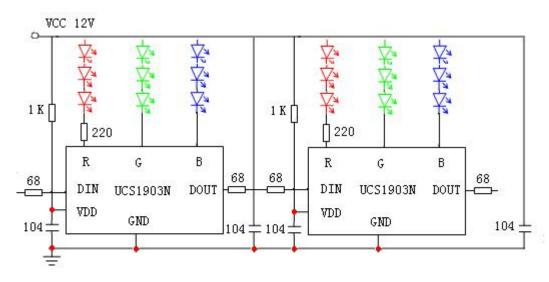

SWITCHING CHARACTERISTICS ($T_A = -20$ to +70 °C, $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max	Unit	Test conditions
Propagation delay time	t _{PLZ}	-	-	300	ns	$C_L = 15 \mathrm{pF}, \mathrm{DIN} \rightarrow \mathrm{DOUT},$ $R_L = 10 \mathrm{k}\Omega$
Fall time	t _{THZ}	-	-	120	μs	$C_L = 300 \text{pF},$ OUTR/OUTG/OUTB
Data transfer rate	F _{MAX}	800	-	-	kbps	50 % duty cycle
Input capacitance	Cı	-	-	15	pF	-

constant current characteristic

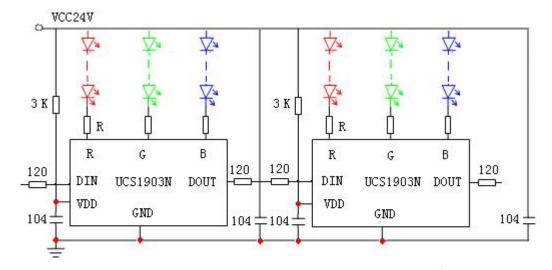

UCS1903N Constant current characteristic is excellent, between Channel , even between chip , the differences of current is tiny

- (1): the differences of current between Channel is less than $\pm 1.5\%$. the differences of current between Chip is less than $\pm 3\%$
- (2): When the voltage of the load change, UCS1903N output current is not affected, as shown in the figure below
- (3): Below UCS1903N output port of the current lout and add on the port voltage Vds curve relationship. the smaller the lout current, the smaller in the condition of constant current need of Vds.


Typical Application circuit diagram

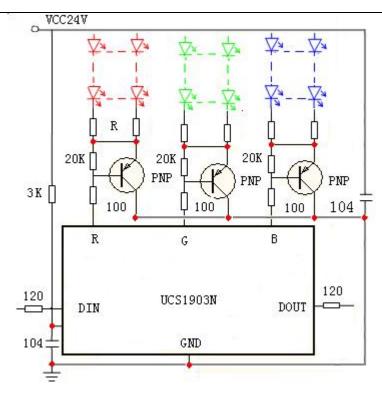
1. Power voltage is 5V

Using constant current mode can be voltage falling at the same time to achieve ideal effect of brightness and color temperature is kept constant.


2. Power voltage is 12V

In order to prevent the damage of charged pull plug, when 12 v power supply, Din and Do all the string in a 68-80 ohm resistor for protection

In order to reduce the interference, between each lamps and lanterns of power supply and ground multiple a capacitance of 104 or 105


3. Power voltage is 24V

In order to prevent the damage of charged pull plug, when 24 v power supply, Din and Do all the string in a 120 ohm resistor for protection

In order to reduce the interference, between each lamps and lanterns of power supply and ground multiple a capacitance of 104 or 105

4. Power voltage is 24V

Attention: Shown above for the PNP transistor, 9012,8550 is work

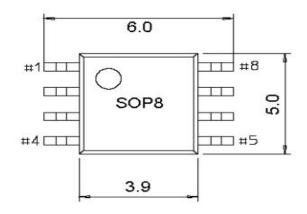
In order to prevent the damage of charged pull plug, when 24 v power supply, Din and Do all the string in a 120 ohm resistor for protection

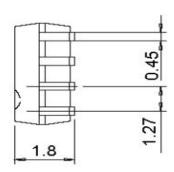
In order to reduce the interference, between each lamps and lanterns of power supply and ground multiple a capacitance of 104 or 105

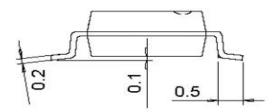
Vds Definition and values

Vds is the output voltage on the RGB pin $_{\circ}$ In order to avoid more than PD, Vds is no more than 4.5 v .The following formula is Vds:

Vds=VCC-I*R-N*Vled


Attention: I is Each string on the LED current, R is the resistance of LED series, N is the LED series connection number, Vled is the LED voltage


stabilizing voltage characteristic


UCS1903N built-in stabilizer, according to the power supply voltage (VCC) is different, must choose different resistance (R) for step-down voltage, Resistance to select in the table below for reference:

VCC (V)	R(ohm)			
5	51-80			
12	750-1K			
15	1.2K-1.5K			
2 4	2.4K- 3K			

package outline drawing AND DIMENSION

Version

versions	Issuing date	Revised profile
VER1.0	2010-2-20	The first issue
VER2.0	2011-9-11	Layout Adjustment